1-1-2003

Prevalence of Sorghum Ergot in Southeast Asia

V. A. Tonapi
International Crops Research Institute for the Semi-Arid Tropics

Komin Wirojwattanakul

Dang Van Vinh
Vietnam Agricultural Science Institute

Moung Moung Thein
Central Agricultural Research Institute

Shrishail Sharanappa Navi
Iowa State University, ssnavi@iastate.edu

See next page for additional authors

Follow this and additional works at: http://lib.dr.iastate.edu/plantpath_pubs
[Part of the Plant Pathology Commons](http://lib.dr.iastate.edu/plantpath_pubs/23)
The complete bibliographic information for this item can be found at http://lib.dr.iastate.edu/plantpath_pubs/23. For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html.

This Article is brought to you for free and open access by the Plant Pathology and Microbiology at Digital Repository @ Iowa State University. It has been accepted for inclusion in Plant Pathology and Microbiology Publications and Papers by an authorized administrator of Digital Repository @ Iowa State University. For more information, please contact hinefuku@iastate.edu.
prevalence of *C. sorghi* as a predominant species in this region. The type 4 sclerotia observed here suggest the coexistence of *C. sorghi* and *C. africana* in India.

Based on a comparative study of *C. sorghi* and *C. africana*, Frederickson et al. (1991) and Bandyopadhyay et al. (1998) indicated that the ability of *C. africana* in producing secondary conidia may be considered as a differentiating character of this species. Subsequently, occurrence of *C. africana* in India was reported by Bogo and Mantle (1999). Further, Pazoutova et al. (2000) reported that *C. africana* has a greater epidemiological advantage, i.e., dispersal efficiency, than *C. sorghi* as it produces secondary conidia in vivo. However, in this study, profuse production of secondary conidia was also observed in *C. sorghi*. Therefore, the production of secondary conidia may not be considered as a differentiating character of the two species. Pazoutova and Bogo (2001) have concluded that *C. sorghi* is present in Central India as a minor pathogen. However, in this study, only one of the 74 isolates resembled *C. africana* and the remaining 73 were morphologically similar to *C. sorghi* indicating that it is a major pathogen in South India. Thus *C. sorghi* has retained its original niche without replacement by *C. africana*. It is necessary to conduct further studies on *C. sorghi* and to better understand its diversity and distribution.

References

Prevalence of Sorghum Ergot in Southeast Asia

VA Tonapi1,2, Komin Wirojwattanakul1, Dang Van Vinh4, Moung Moung Thein5, SS Navi1,6 and PW Tooley7 (1. ICRISAT, Patancheru, 502 324, Andhra Pradesh, India; 2. Present address: National Research Centre for Sorghum, Rajendranagar, Hyderabad 500 030, Andhra Pradesh, India; 3. Division of Plant Pathology and Microbiology, Department of Agriculture, Chatujak, Bangkhen, Bangkok 10900, Thailand; 4. Wheat Research Department, Vietnam Agricultural Science Institute (VASI), Thanh Tri, Hanoi, Vietnam; 5. Department of Plant Pathology, Central Agricultural Research Institute (CARD, Yezin-Pyinmana, Myanmar; 6. Present address: Department of Plant Pathology, College of Agriculture, Iowa State University, Ames, Iowa 50011-1020, USA; 7. USDA-ARS, 1301 Ditto Avenue, Fort Detrick, MD 21702, USA)

*Corresponding author: vilastonapi@hotmail.com

Introduction

Ergot is a serious endemic disease in most of the sorghum (*Sorghum bicolor*) producing countries of the world, with most recent outbreaks being in central and South America (Reis et al. 1996). It is caused by the fungus *Claviceps* spp. Three species are predominant: *C. africana* is prevalent in southern and eastern Africa, South America, Southeast Asia, Australia, and India; *C. sorghi* in India and Southeast Asia; and *C. sorghicola* in Japan.

Ergot can cause widespread damage of male-fertile cultivars in farmers’ fields when environmental conditions favorable to the pathogen occur at flowering (Molefe 1975, Kukedia et al. 1982, Navi et al. 2002). In addition, ergot has great potential to damage sorghum nurseries and cause significant damage to hybrid seed production. Losses from ergot have been estimated at 10-80% in India and South Africa and 10-100% in Brazil (Bandyopadhyay et al. 1996). In this article, we report
prevalence and distribution of ergot pathogens in different geographic regions of Vietnam, Thailand and Myanmar.

Materials and Methods

Locations surveyed. The objective of the survey in Southeast Asia was to understand the diversity in sorghum ergot pathogen and prevalence of different species as was done in India by Bandyopadhyay et al. (2002). The disease was identified using the identification keys of Frederiksen and Odvody (2000). Incidence and severity from each sorghum field was recorded from an area of approximately 12 m\(^2\) at three spots selected at random. Disease incidence (%) was recorded based on number of plants infected out of the total plants counted, and the severity was recorded on 0-100% based on floral infection (%) in individual panicles (0% = healthy and 100% = entire panicle infected).

Extensive on-farm disease surveys were conducted between August and November 2002 in Vietnam, Thailand and Myanmar. We surveyed 21 farms in two provinces (Sonla and Nghean) in Vietnam; 178 farms in 7 provinces (Nakhon sawan, Lopburi, Saraburi, Kanchanaburi, Nakphonratchasima, Sa Keo and Suphanburi) in Thailand; and 87 farms in 10 townships (Taktone, Nyaungoo, Onetwine, Nwahtogy, Nyangoo, Tuangtha, Monywa, Chuangoo, Yezagyo and Kyaukpadaung) in Myanmar.

Ergot prevalence and sampling. A total of 24 ergot samples were collected during the survey (Table 1); of these, two were from Vietnam, 18 from Thailand, and four from Myanmar. The samples were placed separately in brown paper bags, air-dried and stored at laboratory conditions (25±1°C) for further studies at the United States Department of Agriculture (USDA) laboratory of Dr Paul Tooley at Fort Detrick, Maryland, USA for their cultural characteristics and their genetic diversity.

Pathogenicity test of samples collected in Thailand. Conidial suspensions of the ergot samples collected in Thailand were spray-inoculated separately using conidial spore suspension at the concentration adjusted to 1 x 10\(^6\) conidia ml\(^{-1}\) (Tonapi et al. 2002) on sorghum cultivar 296A at stigma emergence stage. The study was conducted under controlled environment at the Division of Plant Pathology and Microbiology, Department of Agriculture, Bangkok, Thailand. The inoculated panicles were covered with brown paper bags and incubated for 3-5 days at 25±1°C. Further, the plants were incubated under greenhouse conditions (25±1°C) for disease development. From the infected panicles, 5-6 infected spikelets were collected in sterilized paper bags and dispatched to the Foreign Diseases and Weed Science Research Institute, USDA, Fort Detrick.

Cropping Pattern

Sorghum is a minor crop in Vietnam and is grown in very small areas in remote hilly regions mainly for fodder.

<table>
<thead>
<tr>
<th>Province/District/Division/Township</th>
<th>Village</th>
<th>No. of fields surveyed</th>
<th>No. of fields with ergot</th>
<th>Disease incidence (%)</th>
<th>Disease severity (%)</th>
<th>No. of samples collected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vietnam</td>
<td>Mochau Hangchang</td>
<td>21</td>
<td>2</td>
<td>Traces</td>
<td>2-7</td>
<td>2</td>
</tr>
<tr>
<td>Thailand</td>
<td>Lopburi, Moung Nikhom</td>
<td>178</td>
<td>18</td>
<td>8-10</td>
<td>2-60</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Lopburi, Moung Khoktoom</td>
<td></td>
<td></td>
<td>Traces</td>
<td>2-10</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Lopburi, Pathanikhom Delang</td>
<td></td>
<td></td>
<td>2-5</td>
<td>5-15</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Lopburi, Moung Khoukeinlai</td>
<td></td>
<td></td>
<td>Traces</td>
<td>2-15</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Nakhon sawan, Moung Nongprin</td>
<td></td>
<td></td>
<td>Traces</td>
<td>10-40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Saraburi, Wang moung Manavan</td>
<td></td>
<td></td>
<td>10-30</td>
<td>50-90</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Saraburi, Wang moung Namsuk</td>
<td></td>
<td></td>
<td>5-20</td>
<td>30-70</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Saraburi, Paphuthabat Saraburi</td>
<td></td>
<td></td>
<td>2-15</td>
<td>20-100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kanchanaburi, Dhamakantiya Dhamakantiya</td>
<td></td>
<td></td>
<td>Traces</td>
<td>10-100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sa Keo, Wangnamyen Sa Keo</td>
<td></td>
<td></td>
<td>20-60</td>
<td>80-100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Saraburi, Wang moung Wang moung</td>
<td></td>
<td></td>
<td>5-20</td>
<td>60-100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Suphanburi, Uthong Suphanburi</td>
<td></td>
<td></td>
<td>15-80</td>
<td>45-100</td>
<td></td>
</tr>
<tr>
<td>Myanmar</td>
<td>Onetwine, Mandalay Shawbin</td>
<td>87</td>
<td>4</td>
<td>2-40</td>
<td>10-80</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Onetwine, Mandalay Beckone</td>
<td></td>
<td></td>
<td>Traces</td>
<td>5-40</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Onetwine, Mandalay Oktwin</td>
<td></td>
<td></td>
<td>2-15</td>
<td>20-80</td>
<td>1</td>
</tr>
</tbody>
</table>
The sorghum genotypes were tall, with sweet stalk, red grains, and take >150 days to mature. In Thailand, hybrid sorghums are predominant over varieties and forage types. In Myanmar, sorghum is grown for food as well as for fodder. Sorghum varieties in Myanmar were similar to those of Thailand and Vietnam. During the survey the crop was in various growth stages from vegetative to physiological maturity or harvestable maturity stages.

Prevalence of Ergot in Farmers' Fields

The most obvious external symptom of ergot observed on panicles (on nodal tillers or on the main plant) was the honeydew exudation from the infected flowers. Honeydew was either uniformly yellow-brown to pink or superficially dull white. However, no sclerotial stage symptoms were observed.

In Vietnam, ergot incidence was in traces with a severity from 2 to 7%. In Thailand, disease incidence ranged from traces to 80% and severity from 2 to 100% while in Myanmar, disease incidence ranged from traces to 40% and severity from 5 to 80% (Table 1). The samples from Myanmar and Vietnam appear to be C. sorghi. Putative C. africana types were observed only in the Thailand samples collected from Saraburi, Manavan and Namsuk villages (Saraburi province) and Suphanburi (Suphanburi province). Claviceps sorghi was also observed in some samples from Thailand. Reproductive potential of ergot pathogen(s) is an important determining factor, which decides the relative predominance of one species, over the other. Results from molecular analysis are awaited to distinguish species or variability within the species.

Acknowledgment. This research project was funded by USDA, USA. The views expressed are not necessarily those of USDA. The cooperation of farmers, non-government organizations (NGOs), staff of agricultural universities, research stations, village councils and Department of Agriculture in Vietnam, Thailand and Myanmar is acknowledged. We thank Suresh Pande, ICRISAT, Patancheru, India and R Bandyopadhyay, IITA, Nigeria for their guidance and help during this survey.

References

Simple Techniques for Production of Secondary Conidia and Ergot Inoculation in Sorghum

VA Tonapi1,2, MJ Ryley2, V Galea3, S Bhuiyan3 and A Wearing3 (1. ICRISAT, Patancheru 502 324, Andhra Pradesh, India; Present address: National Research Centre for Sorghum, Rajendranagar, Hyderabad 500 030, Andhra Pradesh, India; 2. Agency for Food and Fibre Sciences, Department of Primary Industries, PO Box 102, Toowoomba, Queensland 4350, Australia; 3. School of Agriculture and Horticulture, University of Queensland, Gatton, Queensland 4343, Australia)

*Corresponding author: vilastonapi@hotmail.com

Introduction

Ergot (sugary disease), caused by several species of Claviceps including C. africana, is a serious panicle disease in most of the sorghum (Sorghum hicolor) producing countries of the world (Bandyopadhyay et al. 1998). Airborne secondary conidia are the primary source of inoculum of C. africana (Bandyopadhyay et al. 1998) and are responsible for the rapid spread of the pathogen (Frederickson et al. 1989,1991,1993). Secondary conidia are produced on sterigmata from germinated macroconidia from the honeydew. To date, all infection studies have been conducted with mixed suspensions of macroconidia and secondary conidia, sprayed onto stigmas. However, in nature this does not occur, as the